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Abstract—Docked bike systems have been widely deployed in
many cities around the world. To the service provider, predicting
the demand and supply of bikes at any station is crucial to
offering the best service quality. The docked bike prediction
problem is highly challenging because of the complicated joint
spatial-temporal (ST) dependency as bikes are picked up and
dropped off, the so-called “flows”, between stations. Prior works
often considered the spatial and temporal dependencies sepa-
rately using sequential network models, and based on locality
assumptions. Without sufficiently capturing the joint spatial and
temporal features, these approaches are not optimal for attaining
the best prediction accuracy.

We propose STGNN-DJD, a novel data-driven Spatial-
Temporal Graph Neural Network to solve the bike demand
and supply prediction problem by unifiedly embedding the
Dynamic and Joint ST Dependency in two novel ST graphs.
Given station locations and historical rental data on bike flow
over the past time slots 0 to t − 1, we seek to predict online
the bike demand and supply at any station at time t. To extract
joint spatial-temporal dependency, STGNN-DJD employs a graph
generator to construct, at the beginning of time t, two graphs
which embed the flow relationships between stations at various
time slots (flow-convoluted graph) and dynamic demand-supply
pattern correlation between stations (pattern correlation graph),
respectively. Given the two spatial-temporal graphs, STGNN-DJD
subsequently employs a graph neural network with novel flow-
based and attention-based aggregators to generate embedding
of each station for docked bike prediction. We have conducted
extensive experiments on two large bike-sharing datasets. Our re-
sults confirm the effectiveness of STGNN-DJD as compared with
other state-of-the-art approaches, with significant improvement
on RMSE and MAE (by 20%−50%). We also provide a case study
on dynamic dependencies between stations, and demonstrate that
the locality assumption does not always hold for a docked bike
system.

Index Terms—bike demand and supply prediction; spatial-
temporal data prediction; spatial-temporal data management.

I. INTRODUCTION

Dock-based bike sharing, widely deployed in many cities
such as Chicago, Los Angeles, London and Shanghai, offers
a cost-effective means for last-mile solutions, promotes a
healthy lifestyle, and eases the growing traffic congestion
and environmental concerns. The global bike-sharing service
market is estimated to grow to over 13.7 billion U.S. dollars
by 2026 from 3.3 billion U.S. dollars in 2020 [1].

A dock-based bike-sharing system consists of fixed stations
distributed around the city. A user can pick up a bike at any
station, and end the ride by returning the rented bike to any
station in the city. To the service provider, bike shortage at a
station means revenue loss. On the other hand, due to finite
docking capacity at a station, bike over-supply at one station
means that users have to return their bikes to some other
stations, leading to inconvenience and reduction in service
quality. It is hence in the provider’s interest to predict the
demand and supply of docked bikes at stations (so that bikes
can be dispatched in advance to meet the demand and supply).
Such docked bike prediction also has immense value in bike
lane planning [2] and route recommendation [3].

In this work, we consider predicting docked bikes, i.e. their
demand and supply, at any station from a service provider
point of view. Time is slotted, with a certain slot duration of,
say, 10 to 20 minutes. Historical customer rental data for bike
pickup time (demand) and drop-off time (supply) between any
pair of stations, the so-called “flow” between the stations, are
available over the past t slots labelled as 0, 1, 2 . . . , t−1 (e.g.,
t = 500 or 1,000). With the data, the provider would like to
make online predictions of docked bikes at any station for the
next slot, i.e., at time t.

Predicting bike demand and supply at a station is a chal-
lenging problem due to complicated joint spatial-temporal
dependency between stations. This is because the supply of
a station is related to the bike demand of another station with
some temporal lag due to the travel time between stations.
Moreover, stations with similar demand-supply patterns are
significantly correlated. For example, close stations may have
similar patterns because of the locality effect, and stations near
two remote schools may also share similar patterns because
the schools have similar operating hours. Such correlation
between stations may be time-varying, which means that
the correlation between stations could differ greatly based
on different temporal signatures. To achieve high prediction
accuracy, the model needs to appropriately capture the joint
spatial-temporal dependency between stations regarding their
flow relationship and demand-supply patterns.

Although much work has attempted to capture spatial and



temporal dependencies to predict docked bike demand and
supply, most considers them separately with independent mod-
ules [4]–[7]. Regarding spatial dependency, prior formulations,
no matters whether based on non-overlapping grids or spatial
graphs to model station locations, often apply convolution
approaches to address it. For temporal dependency, they use
Recurrent Neural Networks (RNNs) and its variants such
as Long Short Term Memory (LSTM) and Gated Recurrent
Unit (GRU). While commendable, these works consider the
two dependencies sequentially in a decoupled manner, hence
failing to capture the joint spatial-temporal nature of our
current setting.

Moreover, existing approaches often solely assume a lo-
cality effect in their study (i.e., local dependency) by over-
looking the dependency on distant stations (i.e., global de-
pendency) [8]–[11]. While these approaches are applicable in
some settings, they may not work well for the bike-sharing
case where users are not likely to bike between two nearby
stations, and two remote stations may have similar demand-
supply patterns. Our empirical evaluations in Section VIII also
present counter intuitive results regarding the locality effect. In
reality, a better approach is to learn the relationship between
distance and dependency in a data-driven manner instead of
relying on prior assumptions.

To solve the aforementioned problems, we propose
STGNN-DJD, a novel, effective, and data-driven Spatial-
Temporal Graph Neural Network to capture the Dynamic
and Joint spatial-temporal Dependency between stations for
demand and supply prediction at any docking station. Given
historical data on flow between stations up to time t − 1,
STGNN-DJD predicts the docked bikes at any station at time
t.

Our solution first uses flow convolution to extract spatial-
temporal features for any individual station, and generate
two novel and effective graphs to encode the dependency
between stations in terms of direct flow between stations as
well as the correlation of their flow time-series. After that,
it employs two novel aggregators to capture the dynamic
and joint spatial-temporal dependency in the flow-convoluted
graph and the pattern correlation graph, without assuming any
relationship between distance and traffic. As both spatial and
temporal information is encoded by the unified graph structure,
our solution captures the spatial and temporal dependency
jointly rather than independently. To summarize, we make the
following contributions in this paper:
• A generator to construct time-dependent graphs encoding

the dynamic and joint spatial-temporal dependency: With
a novel graph generator, STGNN-DJD first constructs two
graphs which embed the spatial and temporal information
between stations. These spatial-temporal graphs, with
stations as nodes, are generated at the beginning of time
slot t so as to make prediction at the slot. The first one is
called the flow-convoluted graph (FCG), which captures
the features of bike exchanges between stations. The
second one is called the pattern correlation graph (PCG),
which accounts for pattern correlation between stations

by relating the features of demand and supply patterns at
each station with the other (there may not be physical bike
flows between the two stations). FCG and PCG co-exist
to solve both the local and global dependency between
stations. In both graphs, the node features and edges are
time-varying, generated by the data of the past t slots, in
order to encode the dynamic spatial-temporal dependency
between stations.

• A graph neural network with novel aggregators to process
spatial-temporal graphs for prediction: We propose a
novel spatial-temporal graph neural network (GNN) to
process FCG and PCG. In particular, we design a flow-
based aggregator to learn the dependency in FCG, and
propose a data-driven attention-based aggregator to learn
inter-station dependency in PCG without assuming any
relationship between distance and traffic. The learned
representation of stations is then fed into a demand-
supply neural network predictor for prediction.

• Extensive experiments and a case study to validate
the effectiveness of STGNN-DJD: We evaluate the per-
formance of STGNN-DJD using two large-scale bike-
sharing datasets collected in Chicago and Los Angeles.
Our results demonstrate the effectiveness of STGNN-
DJD to capture jointly spatial-temporal dependency for
accurate prediction on docked bikes. STGNN-DJD sig-
nificantly outperforms the state-of-the-art models (by
20% − 50% on RMSE and MAE). We also conduct
a case study on the relationship between inter-station
dependency and distance. The study shows that close
stations do not always mean higher dependency than
distant ones, and vice versa, and distant stations may have
high impact on bike demand and supply prediction.

The remainder of this paper is organized as follows. We
present related works in Section II, followed by our problem
formulation and system overview in Section III. We present
the spatial-temporal graph generation in Section IV. Then
we introduce the spatial-temporal dependency learning and
demand-supply predictor in Sections V and VI, respectively.
We present experimental settings and results in Section VII,
and a case study in Section VIII. We conclude in Section IX.

II. RELATED WORKS

Bike-sharing plays an important role in public transportation
systems, and predicting demand and supply for bike-sharing
systems has hence attracted much attention in recent years.
Depending on the spatial granularity of the prediction task,
bike demand and supply prediction can be separated into three
levels: cluster-based, grid-based, and station-based.

Cluster-based works group neighboring stations into a few
clusters based on geographical locations, historical transition
or usage patterns, and then predict the demand and supply
for each cluster [12], [13]. In particular, a multi-similarity-
based inference model with a Gradient Boosting Regression
Tree (GBRT) is used for prediction in the work [12], while
Monte Carlo simulation is adopted in WCN-MC [13]. As for
grid-based works, they divide a city map into equal-sized and



non-overlapping grids, and the traffic (e.g., bike demand) of
each grid is predicted [8], [9], [14]–[16]. A city map with
girds is seen as an image with pixels, and convolution neural
networks are used in these works to capture the correlations
among grids for prediction. While impressive, both cluster-
based and grid-based works can hardly be extended to the
scenario of demand and supply prediction for docked bike
stations because the docking stations are not uniformly dis-
tributed in the grids of a city.

In contrast to the cluster-based and grid-based approaches,
station-based approaches predict the demand and supply for
individual stations. Earlier works employ traditional time
series analysis approaches, such as ARIMA and its variants
to predict bike demand [17], [18]. However, these approaches
solely consider the temporal dependency on historical data, but
ignore the importance of dependency among stations, which
we believe is an essential aspect of bike-sharing systems.
Some works employ machine learning algorithms to predict
the demand and supply based on manually defined features.
They first extract features from historical flow data and other
external data such as POIs and weather, and then predict the
demand and supply using machine learning algorithms, such
as linear regression [19], K-Nearest-Neighbor regression [20],
Support Vector Machine [21], and Bayesian model [22].
Nevertheless, these works highly rely on manually defined
features, and they cannot capture the joint spatial-temporal
dependency among stations.

In recent years, deep learning has seen rapid develop-
ment [23] and it has been applied to capture the spatial
and temporal dependencies between stations to predict the
demand and supply of bike stations. Most of them consider
the spatial and temporal dependencies separately. In terms of
spatial dependency, some recent works started to use graph
structures to embed the spatial dependency between stations
and learn latent representation for stations using graph neural
networks, such as graph convolution networks [24] and graph
attention networks [25]. Most of these works assume that
spatially closer stations have similar demand-supply patterns
and have stronger dependency than distant stations. They
construct the graphs based on the distance of stations or road
networks [5]–[7], [10], [11], [26]–[29]. However, these works
are inclined to capture influence from nearby stations but
overlook those distant stations. Other works use Transformer
with self-attention [30] to capture the dependency among
stations [31]–[33]. Nevertheless, they do not consider the
flow relationships between stations, which we believe is a
significant indicator of inter-station dependency but is not
well considered in these works. Compared with existing works
on spatial dependency modelling, STGNN-DJD considers de-
pendency between stations regarding flow relationships and
demand-supply correlations. It generates a flow-convoluted
graph to embed the flow features between stations and a
demand-supply correlation graph to embed the demand-supply
pattern correlations between stations. In particular, STGNN-
DJD employs a data-driven attention approach to learn the de-
pendency between stations, without assuming any relationship

between distance and traffic.
Another important aspect for docked bike prediction is the

temporal dependency. Flow between stations highly depends
on the time-of-the-day and the-day-of-the-week due to human
periodic mobility behavior [34], [35]. To this end, most
existing works employ RNNs and their variants such as LSTM
and GRU to consider the temporal dependency [4], [14], [26],
[36]–[39]. However, RNN-based approaches are difficult to
capture the dependency between distant positions in a se-
quence due to the vanishing or exploding gradient problem. To
address these issues, we propose a flow convolution approach
based on the 1× 1 convolution kernel. The 1× 1 convolution
kernel has been used for cross channel pooling in Network-
in-Network [40] and dimension reduction in GoogLeNet [41].
Compared with RNN-based models, our flow convolution
approach is effective for capturing long-term dependency.

While commendable, the existing works separately consid-
ered spatial and temporal dependency in a decoupled manner,
and they failed to capture the joint spatial-temporal depen-
dency among stations. On the other hand, considering the spa-
tial and temporal dependencies in a joint manner has attracted
much attention in recent years. Similar to STSGCN [42], our
proposed STGNN-DJD generates spatial-temporal graphs to
embed both spatial and temporal information in the unified
structure so that it can capture the joint spatial-temporal depen-
dency between stations for prediction. Nevertheless, STSGCN
focuses on capturing the locality spatial-temporal correlation
while STGNN-DJD has the capacity to consider both locality
and global spatial-temporal dependency.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

A. Problem Formulation

In a bike-sharing system, a trip record is denoted as
{rid, so, sd, ts, te}, which contains the following information:
(1) a trip ID rid, (2) an origin station so, (3) a destination
station sd, (4) a start time ts, and (5) an end time te.

Let S = {s1, s2, . . . , sn} be the set of bike stations in a
city, where si = (loni, lati) is a station whose longitude and
latitude are (loni, lati). Users can borrow or return bikes at
any station in the city.

To describe the traffic between stations at a time slot t,
let It ∈ Rn×n and Ot ∈ Rn×n be the inflow and outflow
matrices, where n is the number of stations. Iti,j ∈ It is the
number of bikes borrowed from station sj and returned to si
at time t, where t is the returning time. Ot

i,j ∈ Ot refers to the
number of bike checked out from station si at t and returned to
station sj , where t is the checkout time. Correspondingly, each
row in the inflow and outflow matrices represents a station’s
inflow from and outflow to other stations at a time slot t,
denoted as Iti ∈ R1×n and Ot

i ∈ R1×n, respectively. Consider
that a user borrows a bike from a station si at ti and returns
it to station sj at tj . Then Oti

i,j and Itjj,i will be both increased
by 1. Note that because ti and tj may not refer to the same
time slot, ItT = Ot does not hold.

Based on the above definitions, the docked bike demand
and supply prediction problem is formulated as below:



Definition 1: (Docked bike demand and supply prediction
problem) Given a set of bike stations S, and the historical
inflow and outflow matrices until time t−1, {I0, ..., It−1} and
{O0, ..., Ot−1}, we would like to predict the bike demand xti
and supply yti for any individual station si at the time slot t,
where xti =

∑n
j=0O

t
i,j and yti =

∑n
j=0 I

t
i,j .

B. STGNN-DJD Overview

Figure 1 overviews the process of STGNN-DJD, which
consists of the following three essential components:
• Spatial-temporal graph generation: Given the historical

flow data between stations until t − 1, STGNN-DJD
generates two spatial-temporal graphs, namely the flow-
convoluted graph and the pattern correlation graph, to
represent the spatial-temporal dependency between sta-
tions in terms of their flow dependency and demand-
supply pattern correlation respectively. To this end,
STGNN-DJD first uses a flow convolution to learn time-
dependent spatial-temporal features for stations from their
historical flow data. Based on the station features, it
generates a flow-convoluted graph, in which edges are
generated according to the flow convolution result. How-
ever, stations with similar patterns may not have physical
flow between them. To address the issue, STGNN-DJD
employs an attention mechanism to generate a pattern
correlation graph, which accounts for pattern correlation
between stations by relating the features of demand and
supply patterns at each station with the other.

• Spatial-temporal dependency learning: Based on the gen-
erated spatial-temporal graphs, STGNN-DJD uses a graph
neural network to learn spatial-temporal embedding for
each node (i.e., station) by aggregating information from
other nodes in the graphs. The spatial-temporal depen-
dencies between stations are captured via the aggrega-
tion process of GNNs. Because flow between stations
explictly indicates their dependency level, STGNN-DJD
employs a flow-based aggregator to measure the depen-
dency in terms of flow in the flow-convoluted graph.
For dependency learning in the pattern correlation graph,
STGNN-DJD uses a data-driven attention-based aggrega-
tor to automatically learn the dependency, without any
assumptions of the relationship between distance and
dependency. Moreover, a multi-head attention mechanism
is used in the pattern correlation graph to improve the
generalization of the model and capture various depen-
dencies.

• Demand-supply predictor: Given the spatial-temporal em-
bedding of stations, STGNN-DJD simultaneously pre-
dicts bike demand and supply of any individual station
at time t using fully connected neural networks.

The details of each component will be elaborated in Sections
IV, V, and VI, respectively.

IV. SPATIAL-TEMPORAL GRAPH GENERATION

Graph generation is fundamental to the success of a GNN-
based model. If the generated graph cannot effectively capture

the relationships between nodes (i.e., stations in our work), it
may degrade the prediction performance [7], [36].

In this work, we consider the spatial-temporal dependen-
cies between stations in terms of their flow dependency and
demand-supply pattern correlation. To this end, we propose a
graph generator to construct a flow-convoluted graph (FCG)
and a pattern correlation graph (PCG) encoding the dynamic
and joint spatial-temporal dependency in this section. First, we
propose a flow convolution approach to learn spatial-temporal
features for each node from its historical flow data (Section
IV-A). Subsequently, we introduce the edge generation for
FCG and PCG in Section IV-B.

A. Node Feature Learning

Historical flow data reveal the spatial-temporal dependency
over time. Intuitively, bike demand and supply are affected
by the most recent past time slots’ flow, termed as short-
term dependency. Meanwhile, the demand and supply have a
significant daily periodic dependency (long-term dependency),
as usually seen in the time series data with periodic movement.

Inspired by the success of 1×1 convolution in fusing infor-
mation from different channels in computer vision tasks [40],
we propose a flow convolution approach with 1×1 convolution
kernels to capture dependency from different time slots. As
shown in Figure 2, stations’ inflow from or outflow to other
stations at different time slots is represented as tensors with
multiple channels. Then we use 1 × 1 convolution kernels to
capture short-term and long-term dependency from different
channels.

We use the inflow and outflow matrices in the past k
time slots to capture the short-term dependency, namely
{It−k, . . . It−2, It−1} and {Ot−k, . . . Ot−2, Ot−1}. We first
concatenate them along the temporal dimension respectively,
to obtain two tensors IS ∈ Rk×n×n and OS ∈ Rk×n×n. For
each station, its inflow/outflow over time can be seen as a 1×n
matrix with k channels, where n is the number of stations.
We apply 1 × 1 convolution kernels on their inflow/outflow
matrices to integrate the flow information at different time
slots, and obtain their short-term temporal embedding:

ÎS = σ1(W1 ∗ IS + b1), (1)

ÔS = σ1(W2 ∗OS + b2), (2)

where W1 ∈ R1×k, W2 ∈ R1×k, b1 ∈ Rn×n and b2 ∈ Rn×n

are learnable parameters, ∗ represents the convolution operator,
and σ1(·) is the ReLU activation function. ÎS ∈ Rn×n and
ÔS ∈ Rn×n are the inflow and outflow short-term embedding
respectively.

To consider the long-term dependency, the inflow and
outflow matrices of the same time slot in the past d
days are used: IL = {It−d×day, . . . It−1×day} and OL =
{Ot−d×day, . . . Ot−1×day}, where IL ∈ Rd×n×n and OL ∈
Rd×n×n denote the inflow and outflow matrices in the past
d days. The long-term temporal dependency is then captured
using the 1× 1 convolution kernel:



Fig. 1. Overview of STGNN-DJD.

Fig. 2. Illustration of flow convolution. We apply 1 × 1 convolution kernel
on the historical inflow/outflow data, and fuse the short-term and long-term
dependency using an attentive aggregator. We consider the last k time slots
(same day) for short-term dependency, and the last d days (same time-of-day)
for long-term dependency.

ÎL = σ1(W3 ∗ IL + b3), (3)

ÔL = σ1(W4 ∗OL + b4), (4)

where W3 ∈ R1×k, W4 ∈ R1×k, b3 ∈ Rn×n and b4 ∈ Rn×n

are learnable parameters, and σ1(·) is the ReLU activation
function. ÎL ∈ Rn×n and ÔL ∈ Rn×n are the inflow and
outflow long-term temporal embedding respectively.

The short-term and long-term dependency are not always
equal for stations. Thus, we propose an attentive aggregation
approach to fuse the short-term and long-term dependency,
respectively.

We define the temporal inflow matrix:

Î = βS
I · ÎS + βL

I ÎL. (5)

(a) (b)

Fig. 3. Illustration of dependencies between stations: (a) Flow between
stations indicates their dependency. In this example, s1 depends more on
s4 than s2 and s3 because there exists more flow from s4 to s1 than from
s2 and s3. (b) Stations with similar patterns are likely to be significantly
correlated. For example, stations near two schools (no matter near or distant)
may have similar demand and supply patterns because the schools have similar
operating hours.

βS
I and βL

I are computed by

βS
I =

exp(W5 · ÎS)
exp(W5 · ÎS) + exp(W5 · ÎL)

, (6)

and

βL
I =

exp(W5 · ÎL)
exp(W5 · ÎS) + exp(W5 · ÎL)

, (7)

where W5 ∈ Rn×n are learnable parameters.
Similarly, we have the temporal outflow matrix as follows:

Ô = βS
O · ÔS + βL

OÔL, (8)

where βS
O and βL

O are computed similar to Equations 6 and 7,
with learnable parameters W6 ∈ Rn×n.

To fuse the various temporal dependencies and jointly con-
sider the inflow and outflow information, we concatenate the
above temporal embedding of inflow and outflow as follows:

T = (Î||Ô) ·W7 (9)

where W7 ∈ R2n×n are learnable parameters, and || denotes
the concatenation operation. The learned embedding T ∈
Rn×n is used as node features for stations, where Ti ∈ R1×n

is the feature of station si. Note that T is dynamic over time.



B. Flow and Pattern Edge Generations

Edges in a graph reflect the relationships between stations,
and the edge weight can be used to indicate their dependency.
We consider the flow dependency between stations in FCG,
and apply an attention mechanism to emphasize the depen-
dency between stations in terms of demand-supply pattern
correlation.

1) Flow edge generation: The flow between stations pro-
vides plenty of information to generate the graph. If the flow
between two stations is large, the two stations would highly
depend on each other regarding their dynamic flow. We present
an example in Figure 3(a). The flow from s4 to s1 (O4,1 = 30)
is larger than that from s2 (O2,1 = 10) and s3 (O3,1 = 20),
indicating that s1 depends more on s4 than s2 and s3. Based on
this intuition, we generate the FCG to embed the dependency
between stations.

We generate a flow-convoluted graph based on Î (Equation
5) and Ô (Equation 8). We generate a edge from sj to si if
Îi,j > 0 or Ôj,i > 0.

A formal definition of the flow-convoluted graph is as
follows:

Definition 2: (Flow-convoluted graph (FCG)) A flow-
convoluted graph at time t is represented as Gf

t = (Nt,Et
f ),

where a node Nt
i = (si,Tt

i) denotes a station si with spatial-
temporal feature Tt

i at time t, and Et
f (i, j) is the edge weight

between nodes si and sj at t:

Et
f (i, j) =

Tt
i,j∑

k∈S Tt
i,k

, (10)

where S is a set of bike stations.
FCG is dynamic over time, and it describes both spatial

and temporal information in a graph. It can hence denote the
time-varying spatial-temporal dependency between stations in
terms of their flow.

2) Pattern edge generation: Stations with similar patterns
are inclined to be significantly correlated. As we show in
Figure 3(b), stations near a school may have similar demand-
supply patterns due to the locality effect (e.g., s1 and s2).
Moreover, stations near two remote schools may also share
similar demand-supply patterns (e.g., s1 and s3) because
schools may have similar operating hours. Unlike most works
which only consider the former case (i.e., the locality effect),
we propose a data driven approach to generate a pattern
correlation graph to consider both cases.

Given the node features of stations, we first compute the
attention coefficient e(i, j) of two stations si and sj as follows:

e(i, j) = σ2([Ti ·W8||Tj ·W8]·W9), (11)

where W8 ∈ Rn×n and W9 ∈ R2n×1 are learnable param-
eters, and σ2(·) is the activation function. Following a prior
work [11], we also use the ELU activation function as σ2(·)
in our work.

Afterwards, the attention coefficient e(i, j) is passed
through a normalized softmax function to get the attention
score:

α(i, j) = softmax(e(i, j)) =
exp(e(i, j))∑n

u=1 exp(e(i, u))
. (12)

Based on the node features and the attention scores, we
define the pattern correlation graph as:

Definition 3: (Pattern correlation graph (PCG)) A pattern
correlation graph at time t is represented as Gl

t = (Nt,Et
l),

where node Nt
i = (si,Tt

i) is a station si with spatial-temporal
feature Tt

i at time t, and Et
l(i, j) is the edge weight for si and

sj which is calculated using the attention mechanism.
To summarize, the FCG and PCG consider the spatial-

temporal dependency from different views. The pattern cor-
relation graph captures the station dependency according to
the correlation of their patterns, while FCG is from the view
of flow dependency. Both graphs are time-dependent, and they
embed the dynamic spatial-temporal dependency in a unified
graph structure.

V. SPATIAL-TEMPORAL DEPENDENCY LEARNING

Based on the generated spatial-temporal graphs in Section
IV, we propose a graph neural network to learn the node
embedding from the generated spatial-temporal graphs. We
first introduce the framework of the proposed graph neural
network in Section V-A. Afterwards, we propose a flow-based
aggregator to learn the dependency for the flow-convoluted
graph (Section V-B), followed by an attention-based aggrega-
tor for the pattern correlation graph (Section V-C).

A. Learning framework

A graph neural network (GNN) learns the latent repre-
sentation of nodes by aggregating information from their
neighboring nodes in a graph. Thus, the dependency between
stations is considered via the aggregation. We propose using
an multi-layer structure to iteratively learn the dependency so
that the influence of non-neighboring nodes can be propagated
via the edges in the graph.

We use F 0 to denote the initial node features in the graph,
where F 0

i = Ti, and Ti is defined in Equation 9. Given a
station si and its neighboring nodes’ features, the node feature
F k
i of si is updated as

F k
i = σ(W k ·Aggr({F k−1

i }∪{F k−1
j ,∀sj ∈ N (si)})), (13)

where N (si) denotes the neighbouring stations of si in the
graph, Aggr(·) is the aggregator to aggregate the node fea-
tures from one’s neighbouring nodes, and W k are learnable
parameters.

We illustrate the algorithm in Algorithm 1. Given a graph
structure, node feature, activation function σ, aggregator
Aggr(·), and the number of layer K, our proposed GNN
learns the embedding for each node. It first initializes the node
embedding (Line 3). Then, it iteratively updates the embedding
of all nodes (Lines 4 - 8). In each round, it updates the node
embedding by aggregating the embedding of its neighbouring



Algorithm 1: STGNN-DJD.

1 Input: Graph G = (V,E); node features
{Ti,∀si ∈ S}; activation function σ; aggregator
Aggr(·); number of layer K.

2 Output:Embedding of nodes F.
3 F 0

i = Ti, ∀si ∈ S;
4 foreach k ∈ {1, 2, ...K} do
5 foreach si ∈ S do
6 F k

i = σ(W k ·Aggr({F k−1
i } ∪ {F k−1

j ,∀sj ∈
N (si)})),

7 end
8 end
9 F = F k;

10 return F;

nodes and itself in the last round using Equation 13 (Line
6). Finally, the node embeddings are derived from the feature
embeddings in the last layer (i.e., F k). Also, mean or max
pooling are the most common aggregation functions used in
GNN. However, such a general aggregation function might
not be suitable for capturing the characteristics of bike-sharing
data. Thus, we propose customized aggregation functions for
the flow convoluted and pattern correlation graphs, in Sections
V-B and V-C, respectively.

B. Flow-based Aggregator for the Flow-convoluted Graph

Since larger flow between stations indicates stronger de-
pendency between them, we propose the flow aggregator as
follows:

Aggr({F k−1
i } ∪ {F k−1

j ,∀sj ∈ N (si)}) =
∑

wi,uF
k−1
u ,

(14)
where F k−1

u ∈ {F k−1
i } ∪ {F k−1

j ,∀sj ∈ N (si)}, and the
weight wi,u is calculated according to Equation 10. The
flow-based aggregator is supposed to outperform conventional
aggregators (e.g., mean or max pooling) because it leverages
the characteristic of flow information. We use Ff

i to denote the
final embedding of station si in the flow-convoluted graph.
As the inflow embedding is time-dependent, the weights of
stations hence vary over time. Consequently, the dynamic de-
pendency in terms of flow between stations could be captured.

C. Attention-based Aggregator for the pattern correlation
graph

The attention mechanism is a data-driven approach to learn
the dependency between any two objects, without making any
assumption. Thus, we propose an attention-based aggregator
to learn the node embedding in the pattern correlation graph,
in which the dependency between nodes is calculated by the
attention mechanism. We extend Equations 11 and 12 to a
multi-layer network. Given the embedding of two stations
F k−1
i and F k−1

j , their attention coefficient ek(i, j) is then
computed as follows:

ek(i, j) = σ2([F
k−1
i ·W8||F k−1

j ·W8]·W9), (15)

where W8 ∈ Rn×n and W9 ∈ R2n×1 are learnable parameters,
and σ2(·) is the activation function. The attention score for the
k−layer is calculated as

αk(i, j) = softmax(ek(i, j)) =
exp(ek(i, j))∑n

u=1 exp(e
k(i, u))

. (16)

Based on that, the embedding of stations F k in the pattern
correlation graph is updated as

F k = σ2(α
k · φF k−1), (17)

where αk ∈ Rn×n is the attention coefficient matrix for bike
stations in Equation 16, σ2 is the ELU activation function, and
φ ∈ Rn×n are learnable parameters.

To improve the generalization of the model and to capture
various dependencies, we use multiple (i.e., m) attention
heads in the model; we compute multiple attention coefficient
matrices using different φ, and then concatenate the results,
as explained in Equation 18:

F k = (||mu=1σ2(α
(k,u) · φuF k−1)) ·W10, (18)

where W10 ∈ R(m×n)×n are learnable parameters, and ||mu=1

denotes the concatenation operation to the m embedding
matrices. We use Fp

i to denote the final embedding of station si
in the pattern correlation graph. All in all, to jointly consider
both dependencies from the flow-convoluted graph and the
pattern correlation graph for a station, we concatenate its flow-
convoluted graph embedding Ff

i and pattern correlation graph
embedding Fp

i :
Fi = Ff

i ||F
p
i , (19)

where || is the concatenating operation, and Fi is the spatial-
temporal embedding for a station si. Fi jointly considers the
spatial-temporal dependency in the flow-convoluted graph and
the pattern correlation graph.

VI. DEMAND AND SUPPLY PREDICTOR

Given the spatial-temporal embedding Ft
i of a station si at

time t, we feed it to a fully connected neural network to predict
the demand and supply of any station si at time t, i.e.,

(x̂ti, ŷ
t
i) = Ft

i ·W11, (20)

where x̂ti and ŷti are the prediction results of bike demand and
supply for si at t respectively, and W11 ∈ Rn×2 are learnable
parameters.

We jointly predict the bike demand and supply for any
individual stations, and utilize the following loss function for
model training:

L =

√√√√ 1

n

n∑
i=1

(xti − x̂ti)2 +
1

n

n∑
i=1

(yti − ŷti)2, (21)

where xti and yti is the ground-truth of si’s demand and supply
at t, and n is the number of stations.



VII. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we first discuss the datasets (Sec-
tion VII-A), baseline approaches and evaluation metrics (Sec-
tion VII-B), and hyperparameter settings in our experiments
(Section VII-C). Then, we compare the performance of
STGNN-DJD with the state-of-the-art approaches in two sce-
narios: (1) overall performance using whole day data (Sec-
tion VII-D), and (2) performance at morning rush hours,
i.e., 07:00 am to 10:00 am, and evening rush hours, i.e.,
05:00 pm to 08:00 pm. (Section VII-E). After that, we
evaluate the effectiveness of each component of STGNN-
DJD (Section VII-F). Finally, we study the performance of
using different aggregators in Section VII-G and the impact of
hyperparameters in Section VII-H, followed by the discussion
of prediction efficiency in Section VII-I.

A. Datasets

We conduct experiments on two real-world bike-sharing
system datasets collected from Chicago and Los Angeles to
evaluate the performance of our proposed approaches. The
description of the two datasets used in our experiments is as
follows:
• Chicago. The Chicago dataset1 was collected from 571

bike stations in the city of Chicago, over nine months
from April 1st, 2018 to December 31st, 2018.

• Los Angeles. The Los Angeles (LA) dataset2 was col-
lected from 83 bike stations in the city of Los Angeles
over 15 months from October 1st, 2017 to December
31st, 2018.

In both datasets, each trip has the attributes of trip ID, bike
ID, start time, end time, origin station ID, destination station
ID, original station name, destination station name, etc. We use
the same data process approaches following a prior work [11].
For each dataset, we performed data cleansing to filter out
data with abnormal trip times (e.g., negative or more than 24
hours) or missing origin/destination stations. After filtering,
the Chicago dataset contained 3, 152, 651 trips and the LA
dataset contained 323, 645 trips.

The time interval was set as 15 minutes in our experiments.
Thus, there were 96 intervals per day for both datasets. We
grouped the data by stations and time slots to obtain the
demand and supply for each station and the flow information
between stations. We chose the data of the first 70% of days
in each dataset as the training data, the following 10% of
days as the validation data, and the remaining data as the
testing data. We used the Min-Max normalization to rescale
the range of demand and supply in [0, 1]. After prediction,
we recovered the results for evaluation. In the experiments,
when we calculate the RMSE and MAE of our model and the
baseline approaches, we exclude the results of those stations
which had no demand or supply. Such is a common practice
used in industry and many prior works [8], [9].

1https://www.divvybikes.com/
2https://bikeshare.metro.net/about/data/

B. Baseline Approaches and Evaluation Metric

We compare STGNN-DJD with the following state-of-the-
art models:

• HA: Historical Average [43] uses the average of a sta-
tion’s historical demand/supply at the same interval as the
prediction result.

• ARIMA: The Auto-Regressive Integrated Moving Aver-
age is a widely used time series prediction model. The
size of the sliding window is set as 12 in our experiments.

• XGBoost [44]: It is a powerful approach for building
supervised regression models. Historical demand and
supply at the last k time slots on the same day and the
same time slot in the last d days are used as features.

• MLP: Multi-layer perceptron which consists of a three-
layer fully-connected neural network is used for predic-
tion.

• LSTM: Long short-term memory is designed to model
temporal dependency for prediction.

• RNN [37]: Recurrent neural networks are used for pre-
diction.

• GCNN [45]: The conventional graph convolutional neural
network is proposed in the work to predict the demand
and supply of each bike station. It only considers the link
correlations between stations.

• MGNN [36]: Multi-Graph Neural Networks are proposed
in the work for station-based demand and supply predic-
tion. They consider correlations between stations without
graph attention.

• ASTGCN [5]: It models three temporal properties of
traffic flows independently, i.e., recent, daily-periodic
and weekly-periodic dependency. It mainly focuses on
dependency between nearby stations.

• STSGCN [42]: It captures the complex localized spatial-
temporal correlations using a synchronous graph convo-
lution network.

• GBikes [11]: A spatial-temporal graph attention convolu-
tional neural network is proposed in the work. It assumed
that closer stations would have more dependency than
distant stations, and used a predefined metric to measure
the dependency in terms of distance.

As CNN-based approaches focus on coarse-grained predic-
tion for areas and can hardly extended to docked bike demand
and supply prediction, we do not include them (such as [8],
[9], [15]) as comparison baseline approaches.

We use RMSE (root mean square error) and MAE (mean
absolute error) as the metrics to evaluate the prediction perfor-
mance of the above baseline models and STGNN-DJD, which
are defined as follows:

RMSE =

√∑n
i=1(xi − x̂i)2 +

∑n
i=1(yi − ŷi)2

2n
, (22)

and

MAE =

∑n
i=1(xi − x̂i) +

∑n
i=1(yi − ŷi)

2n
, (23)



where x̂ti and ŷti are the prediction results of si’s demand and
supply, xi and yi is the ground-truth, and n is the number of
stations.

C. Hyperparameter Settings

We set the hyperparameters based on the performance of
the validation dataset. For temporal information, we use the
flow data at the previous 96 time slots (k = 96) for short-term
temporal dependency consideration while we use that at the
same time slot in the previous 7 days (d = 7) to consider
the long-term dependency. The number of layers for FCG and
PCG is set as 2 and 3, respectively. The number of attention
heads is set as 4. The batch size in our experiments is set as
32. The learning rate is set as 0.01 and the dropout rate is set
as 0.2. Adam optimizer is used for model training [46]. Our
model is trained and tested on a machine with an NVIDIA
RTX2080 Ti GPU.

D. Comparisons with baselines

We compare the performance of our proposed STGNN-DJD
with the state-of-the-art approaches. The overall performances
on the two datasets are presented in Table I. As presented in
the table, our proposed approach STGNN-DJD significantly
outperforms all state-of-the-art approaches on the two datasets
in terms of RMSE and MAE.

In particular, traditional time series approaches (namely HA,
ARIMA, XGBoost, and MLP) yield poor performances in
the experiments compared with the other approaches because
they only consider temporal dependency and fail to take
the spatial dependency between stations into account. LSTM
and RNN have similar performance to the above traditional
approaches since they also solely model the temporal de-
pendency on the historical demand and supply. Furthermore,
we compare STGNN-DJD with some recent deep learning-
based approaches (namely GCNN, MGNN, ASTGCN, STS-
GCN, and GBike). All of these approaches have significant
improvement over traditional time series approaches and con-
ventional RNN and LSTM, which illustrates the importance
of capturing the spatial dependency between stations and
the effectiveness of GCN for modeling spatial dependency.
ASTGCN, STSGCN and GBike have further improvement
than GCNN and MGNN. The reason could be that STSGCN
considers the synchronous spatial-temporal correlation, and
both ASTGCN and GBike incorporate GCN with attention
mechanisms to consider dependency between stations, which
effectively captures correlations between nodes in a graph.
However, all ASTGCN, STSGCN, and GBike are inclined to
focus on dependency from nearby stations. Consequently, they
cannot sufficiently consider the dependency on distant stations,
limiting its performance on prediction.

Compared to the state-of-the-art approaches, STGNN-DJD
jointly considers spatial and temporal dependency using novel
spatial-temporal graphs and well-designed graph neural net-
works. The flow-convoluted graph and pattern correlation
graph capture both local and global spatial-temporal dependen-
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Fig. 4. Comparison with variants of STGNN-DJD.

cies between stations. Therefore, it achieves the best overall
performance.

E. Rush Hours

Bike demand and supply prediction play more crucial roles
at rush hours for the bike-sharing system. Thus, we further
evaluate the performance of STGNN-DJD, and some base-
line approaches (GCNN, MGNN, ASTGCN, STSGCN and
GBikes) at rush hours. Here, we only compare the performance
of STGNN-DJD with some deep learning-based approaches
since they have much better overall performance than others.
The rush hours are selected as 07:00 am - 10:00 am and 05:00
pm - 08:00 pm.

The results are shown in Table II. STGNN-DJD outperforms
all state-of-the-art approaches at rush hours in the morning and
afternoon. The improvement at rush hours is more significant
than in Table I. The reason could be that there are more
bike trips during the rush hours, and they provide more flow
information between stations. The significant improvement at
rush hours indicates the effectiveness of our graph convolution
approach on the flow-convoluted graph for capturing spatial
dependency.

F. Design Variations of STGNN-DJD

There are three fundamental components in STGNN-DJD
to capture spatial-temporal dependency between stations: flow
convolution for node feature extraction, flow-based aggrega-
tion on the flow-convoluted graph, and attention aggregation
on the pattern correlation graph. To evaluate the effectiveness
of each component, we compare STGNN-DJD with the fol-
lowing variants:
• No Flow Convolution (FC): We skip the flow convolution,

and the node features are seen as learnable parameters.
• No Flow-convoluted Graph (FCG): We take away the

flow-convoluted graph. Only the pattern correlation graph
is used to represent the relations between stations.

• No Pattern Correlation graph (PCG): We do not consider
the dependency in terms of demand-supply patterns, and
only use the flow-convoluted graph to capture depen-
dency.

We use RMSE and MAE as metrics to evaluate the per-
formance of variants on the two datasets. The comparison
results are presented in Figures 4(a) (RMSE) and 4(b) (MAE).
As shown in the figures, removing any components of the



TABLE I
COMPARISON WITH SOTA.

Method Chicago Los Angeles
RMSE MAE RMSE MAE

HA 3.81 3.09 3.52 3.32
ARIMA 3.58 2.85 3.17 2.73
XGBoost 3.23 2.87 3.16 2.51

MLP 5.51±1.84 5.04±1.37 3.43±0.75 2.98±1.03
RNN 4.27±1.42 3.93±1.12 3.77±1.15 3.16±0.81

LSTM 3.84±1.83 3.27±1.21 3.05±0.63 2.91±0.87
GCNN 2.17±0.43 1.93±0.23 2.05±0.41 1.86±0.25
MGNN 2.24±0.52 2.08±0.31 1.99±0.44 1.81±0.34

ASTGCN 1.28±0.34 1.20±0.24 1.42±0.29 1.29±0.31
STSGCN 1.24±0.28 1.17±0.31 1.38±0.34 1.25±0.35

GBike 1.72±0.47 1.44±0.37 1.52±0.42 1.38±0.33
STGNN-DJD 1.18±0.37 1.10±0.43 1.33±0.52 1.21±0.40

TABLE II
PERFORMANCE AT RUSH HOURS.

Method Chicago Los Angeles
RMSE MAE RMSE MAE

Morning

GCNN 2.31±0.61 2.07±0.41 2.27±0.83 2.01±0.47
MGNN 2.29±0.86 2.08±0.67 2.12±0.88 1.94±0.56

ASTGCN 1.18±0.36 0.94±0.32 1.39±0.31 1.15±0.27
STSGCN 1.16±0.39 1.01±0.43 1.24±0.36 1.13±0.41

GBike 1.87±0.62 1.64±0.43 1.55±0.85 1.29±0.72
STGNN-DJD 0.73±0.43 0.82±0.28 0.90±0.08 0.88±0.06

Evening

GCNN 3.18±0.60 2.96±0.52 3.15±0.56 2.92±0.53
MGNN 2.96±0.62 2.67±0.54 2.31±0.66 2.18±0.61

ASTGCN 2.37±0.42 2.04±0.33 1.48±0.34 1.17±0.21
STSGCN 2.28±0.39 1.98±0.43 1.52±0.41 1.21±0.37

GBike 2.53±0.61 2.25±0.63 1.73±0.79 1.58±0.62
STGNN-DJD 1.92±0.26 1.46±0.37 1.12±0.29 1.05±0.23
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Fig. 5. Comparison of different aggregators in the flow-convoluted graph.

proposed solution results in inferior performance. Since in-
corporating graph neural networks with flow convolution
makes spatial-temporal dependency be jointly learned, the
performance of our solution without flow convolution drops
significantly, indicating the importance of considering the
spatial-temporal node features and the effectiveness of our
proposed flow convolution approach. The significant perfor-
mance degradation in No flow-convoluted graph and No
pattern correlation graph shows that our proposed graph neural
networks effectively capture inter-station dependency.

G. Aggregator Study

To capture the spatial-temporal dependency between sta-
tions, we designed the flow-based aggregator for the flow-
convoluted graph and the attention-based aggregator for the
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Fig. 6. Comparison of different aggregators in the pattern correlation graph.

pattern correlation graph. In our experiments, we compare the
performance of our proposed aggregators with two widely used
aggregators [47] to evalute their effectiveness:

• Mean Aggregator: It takes the element-wise mean of the
node embedding of one’s neighboring nodes and itself.

• Max Aggregator: We feed the embedding of one’s neigh-
boring nodes and itself into a fully-connected neural
network independently, and apply an element-wise max-
pooling operation to aggregate information.

We first use the above two aggregators to replace the flow-
based aggregator. The results of RMSE and MAE on the
Chicago dataset and the Los Angeles dataset are presented in
Figures 5(a) and 5(b). The flow-based aggregator outperforms
the other two aggregators on both datasets. In particular, the



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1  2  3  4  5

R
M

S
E

m

 LA
 Chicago

(a) RMSE.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  2  3  4  5

M
A

E

m

 LA
 Chicago

(b) MAE.

Fig. 7. Impact of head number m on the performance.
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Fig. 8. Impact of FCG layer number on the performance.

difference is more significant on the Chicago dataset. The
reason is that the flow-based aggregator relies on the flow
between stations, and there are more trips in the Chicago
datasets than in the Los Angeles dataset. The results illustrate
the effectiveness of the proposed flow-based aggregator.

Then, we replace the attention-aggregator with the mean
aggregator and max aggregator. We present the comparison
results in Figures 6(a) and 6(b). The performance of the
attention aggregator is superior to that of others in terms of
RMSE and MAE, which demonstrates the effectiveness of our
proposed attention-based aggregator.

H. Hyperparameters

Since a multi-head attention mechanism is used to capture
the station patterns for the pattern correlation graph, we
evaluate the impact of the head number m on the RMSE and
MAE. The results of RMSE and MAE versus head number m
are presented in Figures 7(a) and 7(b), respectively. As shown
in Figure 7(a), as the head number m increases, the RMSE on
the two datasets declines, illustrating that multi-head attention
could capture various dependencies and improve the prediction
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Fig. 9. Impact of PCG layer number on the performance.

(a) Dependency from one station to
others.

(b) Dependency from others to one
station.

Fig. 10. Visualization of dependency of a station from/to the 10 nearest
stations from 7:00 am to 10:00 am using an existing approach. The x-axis is
the 10 nearest stations, ordered by distance and the y-axis is the time slots
from 7:00 am to 10:00 am. A darker color represents higher dependency.

performance. The improvement is not significant when m > 4.
The reason could be that each head focuses on different parts
of the input data. When the heads are many, some of them may
focus on the same pattern. Thus, the improvement diminishes
when m becomes large (e.g., m > 4 in our experiment).
Similar results of MAE can be observed in Figure 7(b). Thus,
we have m = 4 as the default parameter in our experiments.

Furthermore, we evaluate the impact of the layer number for
FCG and PCG on the RMSE and MAPE. The results of RMSE
and MAE versus FCG layer number are presented in Figures
8(a) and 8(b). Our model achieves the best performance when
the FCG layer number is 2. The RMSE and MAPE versus
PCG layer number in Figures 9(a) and 9(b) reveals that our
model has the best performance when the PCG layer number
is 3. The results indicate that stacking layers for graph neural
network can enlarge its receptive field and hence improve
its performance, but too many layers may introduce more
learnable parameters and lead to difficulty in model training.

I. Prediction Efficiency

Our model is trained offline, and it does not need to be
retrained for online prediction. The average prediction time
for all stations in LA and Chicago datasets at a time slot is
around 0.014 seconds and 0.038 seconds. Such prediction time
is much lower than the duration of a time slot, demonstrating
that our model can be applied in real world application.

VIII. CASE STUDY

In this section, we study the dependency between stations
via some visualization results. Firstly, we show that existing
works fail to consider the dependency between distant stations.
Then, we demonstrate that the dependency between a pair
of stations varies over time, and the dependencies vary for
different pairs of stations, even at a single time slot. After
that, we discuss the relationship of the dependency between
stations and their distance.

When considering the dependency between stations, prior
works usually assumed the locality effect, i.e., strong depen-
dency for close stations, while neglecting the dependency for
the distant ones. We visualize the dependency between the
Wabash Ave & Grand Ave station in Chicago and its ten



(a) Dependency from one station to
others.

(b) Dependency from others to one
station.

Fig. 11. Visualization of dependency of a station from/to the 10 nearest
stations from 7:00 am to 10:00 am. The x-axis is the 10 nearest stations,
ordered by distance and the y-axis is the time slots from 7:00 am to 10:00
am. A darker color represents higher dependency.

(a) Dependency from one station to
others.

(b) Dependency from others to one
station.

Fig. 12. Visualization of dependency of a station from/to the 10 nearest
stations from 03:00 pm to 06:00 pm. The x-axis is the 10 nearest stations,
ordered by distance and the y-axis is the time slots from 03:00 pm to 06:00
pm. A darker color represents higher dependency.

nearest stations (from 07:00 am to 10:00 am) using an existing
approach [11] in Figure 10. A dark color indicates prominent
dependency. As shown in the figure, the prior approach
assumes that closer stations always have higher dependency
than distant stations. We argue that this assumption may not
be valid for docked bike systems. We will demonstrate that
dependency may not be strong for close stations, while that
of distant ones may not be negligible.

Recall that we use an attention mechanism to capture
dependency between stations in the pattern correlation graph,
in which the dependency between stations is represented as
their attention scores. We first calculate the attention scores
between a bike station and its ten nearest stations from 07:00
am to 10:00 am and from 03:00 pm to 06:00 pm. Then
we visualize their dependencies at different time slots. The
duration of a time slot is 15 minutes following the previous
experiments.

We present the visualization result of the Wabash Ave &
Grand Ave station in Chicago using our approach in Figures
11 and 12, in which the x-axis is the ten nearest stations,
ordered by distance, and the y-axis is the 12 time slots (i.e.,
7:00 am to 10:00 am in Figure 11 and 03:00 pm to 06:00
pm in Figure 12). In Figures 11(a) and 12(a), a cell (xi, yj)
indicates the influence from the target station to the i-th station
at the j-th time slots, while a cell (xi, yj) in Figures 11(b) and
12(b) represents the influence from the i-th station to the target
station. A dark color represents prominent dependency.

As shown in Figure 11(a), the color of cells in the same

column (i.e., cells with the same xi) are different, indicating
that the influence from one station to another varies over time.
Moreover, the color of cells in the same row (i.e., cells with the
same yi) are also different, illustrating that the influence from
one station to other stations is different even at the same time.
A similar observation can be found in Figures 12(a), 11(b),
and 12(b). The results demonstrate that our proposed model
could capture the dynamic dependency between different pairs
of stations and at different time slots.

Furthermore, contrary to the assumption that has been made
in prior works, the dependency between two stations does
not monotonically decrease based on the stations’ distance.
As shown in Figure 11(a), the color of the grid at position
(9, 11), which is the 10th nearest station at the 11th time slot,
is darker than the grid at position (0, 11), which is the closest
station at the 11th time slot. This finding indicates that even
though distance is an essential aspect of spatial dependency,
the dependency between stations might not always be inverse
proportional to their distance. Similar findings can also be
observed in Figures 12(a), 11(b), and 12(b). The visualization
results confirms that the locality assumption does not always
hold for a docked bike system and our approach is effective
to capture both local and global dependency.

IX. CONCLUSION AND FUTURE WORKS

We propose STGNN-DJD, a spatial-temporal graph neural
network to solve the docked bike demand and supply predic-
tion. It employs novel spatial-temporal graphs and an effective
graph neural netowrk to consider the joint spatial-temporal
dependency between stations regarding their flow relationships
and demand-supply patterns. Unlike prior works which con-
sider the spatial and temporal dependencies sequentially in a
decoupled manner, STGNN-DJD achieves lower RMSE and
MAE results compared to the baselines in two real-world
datasets because of the joint spatial-temporal modeling and
customized aggregation functions. We have also provided a
case study to demonstrate the importance of considering both
local and global dependencies between stations. Moreover, we
also show that the dependency between stations varies over
time and the dependency are various for different pairs of
stations at a single time slot.

We discuss below the possible future directions of the
work. One is to extend STGNN-DJD for multi-step pre-
diction. A simple way to extend our approach for multiple
slot prediction is replacing the model output {Ot, It} as
{Ot, · · ·Ot+k, It, · · · , It+k} in both training and prediction
phases. We will study as a future work more sophisticated
approaches for multi-step prediction considering dynamic and
joint spatial-temporal dependency. Another direction is to
design efficient prediction models for both training and predic-
tion phases, and provide detailed experimental comparison.
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