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ABSTRACT
Mass rapid transit(MRT) is playing an increasingly important

role in many cities due to its large carrying capacity, high speed and
punctuality. Understanding the crowd flow and crowd density for
MRT is crucial for smart city and urban planning. The traditional
way to this task is by using smart card data. However, we can only
know the number of passengers entering or exiting the station
from smart card data. When and where the passengers change their
MRT lines still remain unknown. Nowadays, each user has his/her
own mobile phones and from the cellular data of mobile phone
service providers, it is possible to know the users’ transportation
mode and the fine-grained crowd flows. As such, given a set of
cellular data, we aim to estimate the crowd flow of MRT passengers
and crowd density of stations as well as routes. To achieve these
goals, we firstly propose an efficient and scalable approach to detect
MRT trips with a pre-defined reference system. Then based on the
detection result, we estimate the crowd flow and crowd density
by grouping and counting the MRT trips. Extensive experiments
are conducted to evaluate the detection and estimation approaches
on a real dataset from Chunghwa Telecom, which is the largest
telecommunication company in Taiwan. The results confirmed that
our approaches are suitable for MRT trips detection, crowd flow
and crowd density estimation. Finally, we provide case studies to
present some applications and demonstrate the usefulness of our
approaches.
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1 INTRODUCTION
Mass rapid transit(MRT) is playing an increasingly important

role in many cities due to its large carrying capacity, high speed
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and punctuality. Understanding the crowd flow and crowd density
for MRT is essential for urban planning, public transport network
planning, and public transport timetable arrangement. It is also
helpful for passengers to plan their trips. What’s more, it helps
the telecommunication company to determine where to deploy
additional cell tower in order to provide better service. In this paper,
we focus on estimating crowd flow and crowd density for MRT.

In the previous studies, users’ smart card data, which record
when and where users enter or exit an MRT station, have been used
to estimate the MRT passenger flow[5]. However, the smart card
only records the origin and destination stations of a user. Whether
a user changes lines during the trip, and when and where the
change occurs are usually unknown. We cannot estimate the exact
passenger number for those transfer stations, since the number
of transfer passengers is unknown. For example, there are several
MRT lines in Figure 1 and A, B, C , D and E are MRT stations. If a
passenger takes theMRT from stationA to stationD, she can choose
the route ⟨A,B,C,D⟩ in which she changes from the blue line to
the red line at station C or she can choose the route ⟨A,B,E,D⟩ in
which she changes from the blue line to the green line at station
B. In both cases, the smart card system only records the original
station A and destination station D but it cannot identify which
transfer station the passenger chooses.

To deal with the limitation of using smart card data, we use
cellular data instead. Nowadays, each user has his/her own mobile
phones. When users use their mobile phones to call, send messages
or access the internet, the phones are connected to a nearby cell
tower. Even if the user does not use the phone, it will still connect
to a nearby cell tower every hour. Using the location of cell tower
to denote a user’s approximate location, it is possible to know the
users’ transportation mode and the fine-grained crowd flows.

However, there are several issues to estimate crowd flow and
crowd density from cellular data for MRT. First, the coverage of
the cell tower is large and there is intersection of coverage of some
cell towers. Thus, we can not infer the exact location, the moving
direction and the speed of a user from the cellular data directly.
Second, the cellular data sampling rate is not static. It depends on
the strength of the signal and whether the user uses her mobile
phone during her trip. Thus, there may be no data occurring when
use past some MRT stations. Third, some MRT routes are similar to
routes of other transportation modes, which leads to the difficulty
in identifying MRT trips and other trips.

To deal with the above issues, we firstly propose an efficient
and scalable approach for detecting both indoor and outdoor MRT
trips. Some cell towers are selected as reference towers to build a
reference system. Based on the reference system, a matching-based
approach is proposed to detect individual MRT trips. Our approach
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Figure 1: An example of an MRT network

takes both spatial and temporal features into consideration. External
data, including MRT route network data and MRT travel time data
are introduced to our approach. Then, based on the results of our
detection approach, we estimate the crowd density of stations and
routes as well as the crowd flow of origin-destination stations in a
route.

In summary, the major contributions of our paper are outlined
as follows:

• We study on a novel and fundamental problem in urban
computing, i.e., estimating crowd flow and crowd density
from cellular data for Mass Rapid Transit.

• We propose an efficient and scalable approach to detect
both indoor and outdoor MRT trips with cellular data con-
sidering the cell tower property, spatial and temporal fac-
tors.

• We conduct comprehensive experiments over the data from
the largest telecommunication company in Taiwan, the
results demonstrate the efficiency and scalability of our
approaches.

• We provide case studies to show the result of crowd flow
and crowd density estimation for MRT.

The remainder of this paper is organized as follows: Section 2
discusses related works. Section 3 shows the dataset and data pre-
process. Section 4 presents our MRT trip detection approach. The
estimation approaches are discussed in Section 5. The evaluation
results of our approach are presented in Section 6. Section 7 shows
case studies. Section 8 concludes this paper.

2 RELATEDWORKS
Our work is about MRT trip detection as well as crowd density

and crowd flow estimation. In this section, we discuss some related
works.

There have been some works about transportation mode detec-
tion. The prior works [10] [16] [17] proposed methods to detect
user transportation mode from user GPS data. Compared to the
GPS data, there are two challenges of using mobile phone data: it is
inaccurate in determining the position of a user, and the data sam-
pling rate is irregular[2]. To deal with these issues, [2] presented
methods for mapping trajectories of cell tower latitude-longitudes

to transport networks. It defined stay region, extracted trajecto-
ries between stay regions as trips and then mapped the trips to
the transport network. Extracting users’ stationary stay locations
from cellular data as the origin and destination of trips was preva-
lent in the prior research, it has also been discussed in [1] and [6].
Compared to [1] [2] [6], our proposed approach does not have to
detect the stay region for each user. Instead, we mapped the cell
tower to the MRT station directly utilizing a pre-defined reference
system. The paper [5] proposed a method to extract trips from user
call detail record(CDR) data and utilized the data from the public
transport smart card system to distinguish transportation mode.
A probabilistic method consisting of a Hidden Markov Model and
two sub-models was proposed in [15] to identify transportation
modes(driving, biking and walking). Labeled data were necessary
for training in [15]. In [12], users from the same origin to the same
destination were clustered into three subgroups(driving, walking
and public transit) according to their travel time to infer transport
mode share. Other works [7] [9] utilized the signal strength to de-
tect the transportation mode. However, the signal strength data
are not available in our work. An algorithm for MRT trip detection
was proposed in [4] which utilized the property that the indoor
MRT stations in Singapore are served exclusively by indoor cell
towers, and cell phones outside the MRT network cannot access
those towers. However, the limitations of this work are obvious.
The algorithm is limited to detecting indoor MRT trips. And for
other cities without the exclusive property, the algorithm in [4] is
not suitable.

For crowd flow and crowd density estimation, [3] built a hard-
and software system to estimate the number of passengers in a
vehicle. [8] presented approaches to estimate crowd density and
pedestrian flows usingWi-Fi and bluetooth data. In [13], a bluetooth
scan based method was proposed to detect the crowd density. In our
work, we focus on using mobile phone data which can be obtained
more easily as no extra sensors or devices are needed.

3 DATASET AND DATA PRE-PROCESS
We use users’ mobile phone cellular data from Chunghwa Tele-

com, which is the largest telecommunication company with a mar-
ket share of 38% in Taiwan. The cellular data we used are the records
of cell towers the mobile phone is connected to. A mobile phone
is connected to a cell tower in two cases: active network events
or passive network events[4]. Active network events include call-
ing, sending messages or accessing the internet. Passive network
events include switches between network zone or after one hour
of inactivity.

An example of the user mobile phone data is shown in Table
1. The data consist of a user ID, the longitude and latitude of the
connected cell tower, as well as the time stamp. The user ID was
anonymized by the hashing process. Thus, the personal information
of the user is unknown to the authors during the study.

Because there is intersection of the coverage of some cell towers,
one major problem of using cellular data for mobility modeling is
the oscillation problem[14]. Oscillation occurs when the mobile
phone switches between cell towers very quickly instead of being
connected to one cell tower. We denote two cell towers as ti and
tj . Assume that the cell towers connected by a mobile phone are
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Table 1: Overview of the Dataset

User ID time stamp longitude latitude
-87556096 00:59:19 121.587 25.048
-87556096 00:59:20 121.59 25.04
-87556096 00:59:21 121.587 25.048
-87556096 01:59:23 121.587 25.048

... ... ... ...
-87556096 16:02:01 121.5 25.041
-87556096 16:02:06 121.5 25.041

Table 2: Example of processed data

User ID start time end time longitude latitude
-87556096 00:59:19 01:59:23 121.587 25.048

... ... ... ... ...
-87556096 16:02:01 16:02:06 121.5 25.041

⟨ti , ti , tj , ti , ti ⟩. If the connection of the mobile phone switches be-
tween ⟨ti , tj ⟩ and ⟨tj , ti ⟩ very quickly, the connection to tj can be
regarded as resulting from the oscillation problem. To reduce the
effect of the oscillation problem, we remove the records which re-
sulted from the oscillation problem. In this example, the connection
to tj will be removed in our data pre-process. After that, if two
consecutive records are the same cell tower, the two records will be
merged. An example of the pre-process result of Table 1 is presented
in Table 2. The second record in Table 1 is removed as oscillation
data and three records of the cell tower ⟨121.587, 25.048⟩ and two
records of the cell tower ⟨121.5, 25.041⟩ in Table 1 are merged as
one record respectively in Table 2.

After data pre-process, we define each record as ℓ = ⟨u, tc , ts , te ⟩,
where u is the user ID, tc is a cell tower, ts is the start time and te
is the end time. Then the user data can be denoted as a sequence of
data records: L = ⟨ℓ1, ℓ2, ..., ℓi , ...ℓn⟩.

4 MRT TRIP DETECTION
The MRT trip detection algorithm plays the key role in our work.

The intuitive idea for detecting MRT trips from a user’s cellular
data is to compare the similarity of the user’s trajectory and the
MRT route. However, it is not efficient since we have to calculate
the distance between each MRT station and each cell tower in the
user data.

The signal coverage of a cell tower is limited; thus the mobile
phone is usually connected to a nearby cell tower. An observation
is shown in the Figure 3. From the observation, we know that the
mobile phone of a MRT passenger is usually connected to a cell
tower near the MRT station. Utilizing this property, we propose an
efficient approach in this work.

The overview of the approach is presented in Figure 2. Given the
cellular data of the user as the input, the detection approach will
output the detail MRT routes of the user. The detection approach
consists of three sub-approaches. To deal with the issue of large
coverage and intersection of coverage of cell towers, we propose
a tower-station matching approach with the help of a reference
system, considering the cell tower property and the spatial factors.

Figure 2: The overview of the MRT trip Detection approach

Figure 3: An observation for the MRT passenger

The time interval grouping approach that utilizes the external data
and temporal factors is proposed to overcome the problem caused by
the issue that different transportation modes share similar routes.
To deal with the irregularity of cellular data sampling rate, we
propose a station complement approach to infer the detail route of
users.

4.1 Reference System Building
To detect MRT passengers, our idea is to detect whether the

user’s mobile phone connects to a cell tower near MRT stations.
We use the reference system consisting of reference towers of each
station to achieve this goal efficiently. The idea of the reference
system is inspired by the work[11]. The reference towers are cell
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towers near MRT stations and to which an MRT passenger’s mobile
phone will be connected with high possibility. In the example in
Figure 3, cell towers t1, t2 and t3 can be used as reference towers
for MRT stations s1, s2 and s3 respectively.

To build the reference system, we select some cell towers as
reference towers for each MRT station. Most MRT stations are
large and there are several gates; we therefore selected reference
towers for each gate when building the reference system. We define
two types of reference systems in our work: the K Nearest Tower
reference system(KNT ) and D meters Coverage Tower reference
system(DCT ).

4.1.1 KNT Reference System. A mobile phone is usually con-
nected to the nearest cell tower with the highest probability. But if
two cell towers are close to each other, there is intersection of their
coverage. In this case, even in the same position, different mobile
phones may be connected to different cell towers. Thus, for the
KNT reference system, we select the k nearest cell towers as the
reference towers for each gate of the station. If a cell tower is the
K nearest cell tower for more than one MRT station, we regard it
as the reference tower for the station to which it is closest so that
each reference tower in the reference system only serves one MRT
station.

4.1.2 DCT Reference System. The radius of the cell tower’s cov-
erage is limited. It ranges from several hundred in urban areas to
several thousand meters in the suburbs[2]. The closer to the cell
tower, the higher the possibility that the cell phone will be con-
nected to it. In the DCT reference system, we consider the radius of
the coverage. If a station is in the D meters coverage of a cell tower,
the cell tower will be selected as the reference tower for the station.
To make sure that each reference tower only serves one station, if
there is more than one station within its D meters coverage, we
define the tower as the reference tower of the closest station.

Figure 4 shows the overview of all the cell towers in Taipei(the
green point), the gates of MRT stations(the red point) and the ref-
erence towers of each station with different reference systems(the
blue point). Compared to the non-reference towers, the reference
towers are very close to the corresponding MRT stations. It illus-
trates that the reference towers can be used as the distinction to
identify the MRT trips and non-MRT trips.

4.2 Tower-Station Matching
After the reference system is built, we can use these cell towers

as a distinction between MRT trips and non-MRT trips. In the user’s
data, if a connected cell tower ℓi .tc is a reference tower of MRT
station si , the data record ℓi will be matched to the station si .

For example, given the reference system shown in Table 3 and
the user data ⟨ℓ0, ℓ1, ℓ2, ...ℓ9⟩, if the cell tower connected record
⟨ℓ0.tc , ℓ1.tc , ℓ2.tc , ...ℓ9.tc ⟩ is ⟨t0, t1, t6, t2, t3, t7, t8, t4, t8, t9⟩, the raw
data are matched to be ⟨s1, s2, s3, s4⟩ since t1, t2, t3, t4 are reference
towers for s1, s2, s3, s4 respectively.

4.3 Time Interval Grouping
In the tower-station matching step, we detect the MRT trip from

the spatial dimension and identify some potential MRT stations.
But only considering the spatial dimension is not enough. If the

Table 3: Example of a reference system

Station Reference Tower Station Reference Tower
s1 t1 s4 t4
s2 t2 s4 t4
s3 t3

user was driving a car past the MRT stations or taking a bus with
a similar route, her mobile phone may also be connected to some
reference towers. However, the travel time from one station to
another is distinct for different transport modes. And the speed
of MRT is higher than the speed of other public transportation
modes and cars. In this step, we take the temporal factors into
consideration and use the travel time as a distinction to detect trips.

Given the station sequence obtained from the last step, we group
the station to a trip based on the time interval and the real travel
time between every two consecutive stations in the station se-
quence. For two consecutive stations si and si+1, we denote the
time interval of the two stations as T I (si , si+1) and the real travel
time as TT (si , si+1). If T I (si , si+1) < TT (si , si+1) + θ , ⟨si , si+1⟩ is
regarded as an MRT trip. θ is set to be 60s in our work. Otherwise,
si is regarded as the destination station of the last MRT trip while
si+1 is regarded as the origin station of the new MRT trip. The real
travel time from one station to another is available at DataTaipei1,
which is an open data platform of the Taipei government. The time
interval of two consecutive stations in the station sequence is cal-
culated as follows: if ℓi .tc and ℓi+1.tc is the reference tower of si
and si+1 respectively, then, T I (si , si+1) = li+1.ts − li .te .

We also consider the connection duration for grouping. If the
duration of staying in a station s is more than β , the station s is
regarded as the destination station of the last MRT trip and also
the origin station of the new MRT trip. β is set to be 30min in the
experiment. The duration of staying in a station is the duration of
being connected to the reference tower of the station.

We continue the example in Section 4.2. IfT I (s1, s2) < TT (s1, s2)+
θ , T I (s2, s3) < TT (s2, s3) + θ while T I (s3, s4) > TT (s3, s4) + θ , then
⟨s1, s2, s3⟩ and ⟨s4⟩ are detected as two candidate MRT trips.

4.4 Station Complement
To better capture the origin station and destination station of the

MRT trip, given the candidate MRT trip ⟨s1, s2...sn⟩, we check the
connected cell tower preceding the first station tp and the connected
cell tower behind the last station tb in the raw data. If the distance
from tp to an MRT station s is smaller than a distance threshold
∆d and the time interval is smaller than TT (s, s1) + ∆t ′, we extend
the MRT trip and regard s as the origin station instead. For the
destination station complement, we adopt the same strategy. ∆d is
set to be 500m and ∆t ′ is set to be 10min.

In the above example, given the candidate trip ⟨s1, s2, s3⟩ and the
raw data ⟨t0, t1, t6, t2, t3, t7, t8, t4, t8, t9⟩, the connected cell tower
preceding the reference tower of s1 is t0. If the distance from t0 to
the station s5 is smaller than ∆d and the difference between the
time interval and travel time satisfies the time threshold, the origin
station of the MRT trip is updated to be s5. The connected tower

1http://data.taipei/
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(a) With KNT reference system(K = 2) (b) With DCT reference system(D = 200)

Figure 4: The overview of all cell towers, reference towers and MRT stations

after the reference tower of s3 is t7. If the distance from t7 to the
station s6 is smaller than ∆d and the time interval satisfies the time
constraint, the destination station of the MRT trip is updated to be
s6. Assume that the trip ⟨s4⟩ does not change after complement. In
our work, we define that each trip consists of at least two stations.
Thus, the exact MRT trip is ⟨s5, s1, s2, s3, s6⟩.

After that, we complement the MRT trip according to the MRT
network. If two consecutive stations si and sj obtained in the last
step are not consecutive stations in the MRT network, we insert the
stations between si and sj in the MRT network into the trip. If there
are multiple routes from si to sj in the MRT network, we choose
the route whose travel time is closest to the time interval. For those
stations complemented in this step, we estimate the time stamp of
the station according to the real travel time from the station with a
time stamp.

5 CROWD FLOW AND CROWD DENSITY
ESTIMATION

Based on the results of our proposed MRT trip detection ap-
proach, we define three kinds of passengers:

• (In-Passenger)The passenger who enters and departs from
the same station.

• (Out-Passenger)The passenger who arrives at the station
by MRT and goes out of the station.

• (Transfer Passenger) The passenger who arrives at the
station by MRT, changes the MRT line and departs from
the station as the transfer station.

The smart card system only records the origin and destination
stations, so we can only estimate the number of in-passengers and
out-passengers from the smart card system data. However, since
we can obtain the exact MRT routes of a user with our proposed
detection approach, we can estimate the number of the three kinds
of passengers based on the detection result. In this paper, we focus
on estimating the crowd density of a station, the crowd density of
different lines at a transfer station and the crowd flow of origin-
destination stations in a route.

The crowd density of a station is the sum of the number of the
three kinds of passengers. We obtain the number of the trips whose

origin, destination or transfer station is the target station from the
detection result.

The crowd density of different lines at a transfer station is the
passenger number of different lines at the transfer station. Passen-
gers at a transfer station may choose different lines. Estimating the
crowd densities of different lines at the transfer stations will help
the MRT company to arrange the schedule more reasonably. We
count the trips whose origin, destination or transfer station is the
target station and the line is the target line.

The crowd flow of origin-destination stations in a route is the
number of passengers from the given origin station to the given
destination station by the route. Understanding the crowd flow
between any origin-destination stations is essential. It is helpful for
route recommendation, route arrangement and schedule arrange-
ment. To estimate the crowd flow, we count the trips that from the
origin station to the destination station by the route among all trips
in the detection result.

Some case studies about the crowd density and crowd flow esti-
mation will be presented and discussed in the Section 7.

6 EVALUATION
To evaluate the performance of our approach, we conducted

our experiments in three parts. In the first part, we evaluated the
accuracy of our detection and estimation approaches. In the second
part, we discussed the precision and recall of our detection approach.
Finally, we tested the efficiency and scalability of our detection
approach.

6.1 Performance of the estimation approach
To evaluate the accuracy of our detection and estimation ap-

proach, we estimated the in-passenger and out-passengers number
of two stations based on the trip detection result and compared
the estimation results with the ground truth released by the Taipei
Metro Company. The Pearson’s correlation is used as metric for
evaluation.

We applied our approach to the data of 10% of Chunghwa Tele-
com users in Taipei from 2017/01/06 to 2017/01/12. The number
of users is around 310, 000. In the KNT reference system, K was set
to be 1, 2 and 3; and D was set to be 100m, 200m and 300m in the
DTC reference system. The MRT stations we selected for evaluation
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(a) Comparison of in-passengers
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(b) Comparison of out-passengers

Figure 5: Comparison of passengers at Nanjing Fuxing Sta-
tion on 2017/01/06
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(a) Comparison of in-passengers
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(b) Comparison of out-passengers

Figure 6: Comparison of passengers at Taipei 101 Station on
2017/01/06

are the Nanjing Fuxing Station and the Taipei 101 Station, which
are two of the most important stations in Taipei. To estimate the
number of in-passengers and out-passengers, we firstly detected
the MRT trips of all users. Then we counted the trips according to
the origin and destination at hourly intervals. The market share
of Chunghwa Telecom is 38% and the data we used were 10% of
total users. After obtaining the inference result γ , we calculated the
approximate result α as : α = γ/(sampling size ∗market share).

The results for Nanjing Fuxing Station on 2017/01/06 are shown
in Figure 5. The results for Taipei 101 Station on 2017/01/06 are
shown in Figure 6. Figures 5(a) and 6(a) present the comparison be-
tween the estimation results of in-passengers and the ground truth.
From the comparison, we can learn that our estimation results have
a very similar trend to the ground truth. The good correspondence
confirms that our proposed approach is suitable for MRT trip de-
tection and crowd density estimation. The comparison of number
of out-passengers in Figures 5(b) and 6(b) leads to the same conclu-
sion. The comparison of the data with other days is also similar to
the results for 2017/01/06. Because of the page limitation, we only
present the results for 2017/01/06.

From the figures, we can also learn that when K and D become
larger, the estimation result increases. That is because the larger
the K and D, the more cell towers are selected as reference towers
and so more MRT trips will be detected. If the K and D are too
large, the result will be overestimated. And if they are too small,
the estimation result will be underestimated.

We also used the Pearson’s correlation to further estimate the
correlation. The result in presented in Table 4. The Pearson’s corre-
lation between the ground truth and all our approaches are larger

Table 4: Correlation between the estimation result and
ground truth

Type Correlation Type Correlation
K = 1 0.956394 D = 100 0.954600
K = 2 0.956323 D = 200 0.956437
K = 3 0.956169 D = 300 0.960197

Table 5: Evaluation of the detection result

Type Precision Recall F-1
K = 1 0.9144 0.7565 0.8280
K = 2 0.7858 0.7678 0.7767
K = 3 0.7680 0.7927 0.7802
D = 100 0.8315 0.7379 0.7819
D = 200 0.7629 0.7990 0.7805
D = 300 0.6402 0.8101 0.7152

than 0.9, which confirms the good correspondence and shows the
good performance of our approaches.

6.2 Performance of the detection approach
In this part of the experiment, we used a small dataset in which

the truth of the MRT trips had been labelled by the users for evalu-
ation. The dataset consists of 7 days data of 10 users in Taipei. To
validate the effectiveness of the approach, the precision, recall and
F-1 score are investigated. We firstly define the precision and recall
for one trip.

Definition 6.1. (Precision of a detected trip) Given a detected trip
Ti with |Ti | stations, if the trip exists and the real tripT ′

j consists of
|T ′
j | stations, then the precision of the trip is pi = (|Ti ∩T ′

j |)/|Ti |.
Otherwise, pi = 0.

Definition 6.2. (Recall of a real trip) Given a real trip T ′
j with

|T ′
j | stations, if the trip is detected and the detection trip has |Ti |

stations, the recall is r j = (|Ti ∩T ′
j |)/|T

′
j |. Otherwise, ri = 0.

Then given the set of detected trips ⟨T1...Ti ...Tn⟩ and a set of
real trips ⟨T ′

1 ...T
′
j ...T

′
m⟩, the precision is Precision = (

∑n
i=1 pi )/n,

the recall is Recall = (
∑n
j=1 r j )/m and the F-1 score is F1 = 2 ∗

(precision ∗ recall)/(precision + recall).
The precision, recall and F-1 score of our approach on the dataset

is shown in 5. All of them confirm the good performance of our
approach. In Table 5, the precision decreases when K or D becomes
larger while the recall increases. That is because when more cell
towers are selected as the reference towers, more trips will be
detected as MRT trips. But at the same time, some of the non-MRT
trips are detected as MRT trips by mistake. When considering the
F-1 score, the approach with K = 1 has a better performance than
other approaches.

6.3 Efficiency and Scalability
To evaluate the efficiency and scalability of our detection ap-

proach, we sampled the cellular data on 2017/01/06 with different
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Figure 7: Running time of the detection approach with vari-
ous reference systems
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Figure 8: Number of passengers from Minquan W.Rd. Sta-
tion to Taipei Main Station

sampling rate: 0.2, 0.4, 0.6, 0.8 and 1. We ran our proposed ap-
proach with various reference systems on the datasets of different
size. The running time is shown in Figure 7. The running time of
our approach increases when the size of the dataset increases. The
increment of running time for different size of datasets is nearly
linear, which illustrates that the detection approach is scalable. In
addition, given the data with the same size, the running time of
our approach with the KNT reference systems increases when K
increases. The reason is that, the larger the K is, the more trips
are detected as MRT trips, which results in more matching, group-
ing and complement. The running time of the approach with DCT
reference systems also increases when D becomes larger resulted
from the same reason.

7 CASE STUDIES
In this section, based on the result of our MRT trip detection

approach, we present the overview of the crowdedness of MRT
stations and MRT routes at different times in Taipei. Then we
present case studies about crowd flow and crowd density estimation.
We utilize the KNT reference system with K = 1 to obtain the MRT
trip result.

7.1 Overview of the crowdedness
It is crucial to know the change in the crowd density in a day.

After detecting the MRT trips, we visualize the trips with the heat
map at different times of the day to show the variety of the crowd

density of the routes and stations. We use the data of different
times(morning, noon, afternoon and evening) on 2017/01/12. The
result is presented in Figure 9. The results showed that the crowded-
ness in the morning(Figure 9(a)) is very similar to the crowdedness
in the afternoon(Figure 9(c)). This is because the route by which
people go to work in the morning and go back home in the after-
noon is very similar. In addition, the hot regions in Figures 9(a), 9(c)
and 9(d) are mainly transfer stations. But, there are more hot regions
in Figures 9(b) and not all of the hot regions are transfer stations.
The comparison shows that the transfer stations play different roles
at different time in a day.

7.2 Crowd density of a station
We aim to show the crowd density of a station for each hour.

Figure 10 shows the results for Taipei Main station, which is one of
the most important and crowded MRT stations in Taipei. We use
the data from 2017/01/07 to 2017/01/10. From the figures, we can
learn about the estimation number of the three kinds of passengers
for each hour. The estimation number of transfer-passengers helps
us have a more comprehensive understanding of the crowd density
of the transfer stations. In Figure 10(a), the trend of number of
passengers on a workday(2017/01/09 and 2017/01/10) is different
from the trend on the weekend(2017/01/07 and 2017/01/08). There
are two peaks in workday’s trend, one is around 8 : 00 which is the
time people go to work and one is around 18 : 00 which is the time
people go home after work. But for the weekend, there is only one
peak at around 17 : 00. The results in Figures 10(b) and 10(c) lead
to a similar conclusion.

7.3 Crowd density of different lines
We take the Taipei Main Station for example in the case study.

It is the intersection of the MRT blue line and MRT red line. We
estimate the crowd densities of the two lines for each hour. Figure
11(a) presents the number of passengers departing from Taipei Main
Station by different lines each hour on 2017/01/07(weekend) and
2017/01/10(workday). Similarly, Figure 11(b) presents the number
of passengers arriving at Taipei Main Station by different lines for
each hour. From the result, we learn that the Blue line is busier than
the Red line at the Taipei Main Station.

7.4 Crowd flow of Origin-Destination Stations
Given the origin station and destination station, we estimate

the crowd flow from the origin station to the destination at hourly
intervals. Figure 8 shows the number of all passengers(AP) from
MinquanW.Rd. Station to Taipei Main Station as well as the transfer
passengers(TP) who are from Minquan W.Rd. Station and then
change their MRT line at Taipei Main Station. The figure reveals
that the trends are different on the weekend(2017/01/07) and on
workdays(2017/01/10). Both the peak time as well as the number of
transfer passengers and all passengers differ between the weekend
and workdays.

8 CONCLUSION
In this paper, we aimed to estimate the crowd flow and crowd

density for MRT stations and routes. We firstly proposed an efficient
and scalable approach to detect MRT trips from cellular data. In
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Figure 9: Overview of the crowdedness in Taipei
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Figure 10: Crowd density of Taipei Main Station
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(a) Number of passengers departing from Taipei Main
Station
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Figure 11: Crowd density of different lines at Taipei Main Station

our proposed detection approach, both spatial and temporal factors
were considered. Then we estimated the crowd flow and crowd
density of stations and routes based on the MRT trip detection
result. We conducted extensive experiments to show the effective-
ness, efficiency and scalability of our approaches on the data from

Chunghwa Telecom, which is the largest telecommunication com-
pany in Taiwan. We also provided several case studies. The case
study demonstrated that we could have a more comprehensive un-
derstanding of the crowd flow and crowd density for MRT utilizing
our proposed detection and estimation approaches.
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